save-environment-iot-paasmer

Save the environment – IOT is the way to go

Sridhar krishnan

Sridhar krishnan

Saving the environment from pollutants, waste dumps, carbon emissions, contaminated water and contaminated land is very important and must be done to protect the earth for a clean and healthy life. Technology should be used wisely to achieve the same. With advancements in sensor technologies, edge devices, communication protocols, and data analytics, IOT is the perfect solution to save the environment.

Waste collection, segregation, recycling and waste treatment is the standard and established the process in waste management. But the challenge is, executing this process as the amount of waste generated is keep increasing in a faster pace with growing world population. As this is a continuous process, this must be supported by the right government policies, strict measures, auditing, educating people and perfect implementation. A small deviation in the process may cause big damages to the environment. This must be handled with the right technology in all levels, IOT can offer end to end solution to achieve the smart waste management to save the environment.

For smart waste collection, IOT can make the Trace bins as smart Trace bins and connect them to the pickup vehicles and control center. The sensors in the trace bins will notify when the bins are full to the pickup vehicles and the nearest one can collect the waste. This will help to empty the bins as soon as they are full and efficiently allotting pickups to save time and cost. Waste segregation is an important process in waste management. Sensors can be used to automate the segregation process. IR proximity sensors are used in an automation system, Capacitive sensors can be used to segregate wet and solid waste. The segregation process can be connected to waste management IOT system to collect data on diverse types of waste collected from different centers, the data can be used for further analysis to derive useful and meaningful insights. Segregated waste based on the type, can be converted or recycled to other products. The final waste must be treated before dumped in landfills to make sure it will not contaminate land and water. IOT sensors and devices in each level can be efficiently used to collect data and manage the entire waste management process to reduce the damages to the environment.

IOT can also be used for Wastewater treatment. It offers a cost-effective, energy-efficient and environmentally friendly solution. The various sensors can be used to measure water temperature, conductivity, pH, turbidity and dissolved oxygen content, as well as atmospheric conditions such as pressure, humidity and solar radiation. After collecting the relevant data, the system can communicate with IOT Gateway to upload the sensor data to the cloud for viewing and analytics. For more details refer
http://www.engineering.com/IOT/ArticleID/14925/Wastewater-Treatment-with-the-Internet-of-Things.aspx

Carbon emission is another major spoiler of the environment. IOT can be used to capture real-time emission data from the sensors and feed it to a cloud storage built for Big Data ingestion, Analyze the data in real time and put in place rules that automate actions when limits are exceeded. Apps can be developed to offer visualization of CO2 emissions so that both the culprits and the government can keep a tab on the emission levels, and appropriate remedial measures can be taken.

IOT based smart solutions can be used to save energy in the home, industries, agriculture, transport, city management to save the environment. So IOT can play a key role in the resolution of these global environmental issues. Cheaper bandwidth, greater availability of computing power and reduced storage costs are all driving the adoption of IOT technologies to combat pollution in more and more innovative ways. With information coming in from so many sensors everywhere, IOT can provide more insight into how we use our world’s resources and how we can conserve them in a way that makes sense.

power-of-iot-edge3

Unleashing the Power of IoT Edge

ManagementTeamMouli1

Chandramouli Srinivasan

Enterprises are increasingly connecting a broad variety and number of IoT endpoints (a collection of sensors) to access data from and better manage physical assets that are relevant to their business. Typical IoT-enabled business objectives include traditional benefits, such as improved asset management, as well as new business opportunities and revenue models, such as subscribed-to services. Integrated IoT platforms are required due to the increasing sophistication, scale and business value of these data exchanges.

An IoT platform is an on-premises software suite or a cloud service (IoT platform as a service[PaaS]) that monitors and may manage and control various types of endpoints, often via applications business units deploy on the platform. The IoT platform generally incorporates operations involving IoT endpoints (sensors, devices, and multidevice systems), IoT gateways, and back-end enterprise applications and data. The platform provides the capability to monitor IoT event streams, enables specialized analysis and application development, and engages back-end IT systems or services. It typically plays a vital role in providing functionality for provisioning, controlling and even changing the endpoints to support IoT solutions. Any IoT solution contains two parts an IoT Edge (includes endpoints and gateways) and an IoT Cloud (includes Cloud, Analytics, and Visualizations).

General IoT Platform capabilities include:

  • Provisioning and management of devices
  • Data aggregation, integration, transformation, storage, and management
  • Device Event processing: Policy and Rules Management
  • Cybersecurity
  • IoT device communications (network and/or the Internet)
  • Adapter or Connectors (API hub, gateway software)
  • Customizing and building applications (SDK, IDE etc.)
  • IoT data analysis and visualization including machine learning
  • User interfaces for both end users and developers

MostIoT Platforms offer many of these capabilities in the cloud and allow edge devices like sensors and gateway to connect to their cloud and leverage these capabilities.

The IoT platform may be implemented by the enterprise as an on-premises solution, using an IoT PaaS in the cloud, or be distributed between any combination of on-premises IoT endpoint agents, the gateway, public cloud IoT PaaS, and back-end systems and data.Very few Edge focused IoT platforms like Fog-Horn and PAASMER provide many of these capabilities on the Edge of IoT. Offering these capabilities at the Edge means all the data from the sensors can be processed at the IoT Edge. This plays a critical role in providing a more real-time response to events and to lower the cost of maintaining an IoT solution.

MISTY is PAASMER IoT Edge software that bundles all the key elements required to power the edge to be truly intelligent than act as data transfer agents. Unique aspects of MISTY are:

    1. Modular Operating System.
    2. High Speed Edge Database.
    3. Real-Time Rules Engine.
    4. Edge Analytics.
    5. Edge Machine Learning Engine.
    6. Hyper-Scale Cloud Connectors.
    7. Patented Security Engine.

IoT platform software is an emerging market with many types of buyers across the enterprise, from central IT to various lines of business (or LOBs). These buyers have different objectives, project types and success criteria. IoT platform software’s rapid evolution is driven by enterprises’ technical and business requirements, which continue to rapidly evolve and vary by industry and region, and emerging standards.